A large deviation principle for a RWRC in a box

Michele Salvi

TU Berlin

February 09, 2011

Michele Salvi (TU Berlin)

An LDP for a RWRC in a finite box

February 09, 2011

Outline

Large Deviations for dummies

- Cramér's Theorem
- Main definition
- Applications

2 Random Walk among Random Conductances

- The model
- Related fields
- The main theorem
- Sketch of the proof

3 Future work

 $X_1,X_2,...$ i.i.d. \mathbb{R} -valued random variables with $\mathbb{E}\left[X_1
ight]=0$ and $\mathrm{Var}(\mathrm{X}_1)=\sigma^2\in\mathbb{R}$.

Michele Salvi (TU Berlin)

э

 $X_1, X_2, ...$ i.i.d. \mathbb{R} -valued random variables with $\mathbb{E}[X_1] = 0$ and $\operatorname{Var}(\mathrm{X}_1) = \sigma^2 \in \mathbb{R}$.

• Strong law of large numbers (SLLN):

$$\mathbb{P}\Big(\frac{1}{n}\sum_{j=1}^{n}X_{j}\xrightarrow{n\to\infty}0\Big)=1;$$

 $X_1,X_2,...$ i.i.d. \mathbb{R} -valued random variables with $\mathbb{E}\left[X_1
ight]=0$ and $\mathrm{Var}(\mathrm{X}_1)=\sigma^2\in\mathbb{R}$.

• Strong law of large numbers (SLLN):

$$\mathbb{P}\Big(\frac{1}{n}\sum_{j=1}^{n}X_{j}\xrightarrow{n\to\infty}0\Big)=1;$$

• Central limit theorem (CLT):

$$\mathbb{P}\Big(\frac{1}{\sigma\sqrt{n}}\sum_{j=1}^{n}X_{j}\in A\Big)\xrightarrow[n\to\infty]{}\frac{1}{\sqrt{2\pi}}\int_{\mathcal{A}}\mathrm{e}^{-\frac{y^{2}}{2}}\mathrm{d}y;$$

 $X_1,X_2,...$ i.i.d. \mathbb{R} -valued random variables with $\mathbb{E}\left[X_1
ight]=0$ and $\mathrm{Var}(\mathrm{X}_1)=\sigma^2\in\mathbb{R}$.

• Strong law of large numbers (SLLN):

$$\mathbb{P}\Big(\frac{1}{n}\sum_{j=1}^{n}X_{j}\xrightarrow{n\to\infty}0\Big)=1;$$

• Central limit theorem (CLT):

$$\mathbb{P}\Big(\frac{1}{\sigma\sqrt{n}}\sum_{j=1}^{n}X_{j}\in A\Big)\xrightarrow[n\to\infty]{}\frac{1}{\sqrt{2\pi}}\int_{A}\mathrm{e}^{-\frac{y^{2}}{2}}\mathrm{d}y;$$

• Large Deviation Principle (LDP) (+ other conditions):

$$\mathbb{P}\Big(\frac{1}{n}\sum_{j=1}^n X_j \ge x\Big) \approx \mathrm{e}^{-n\mathcal{I}(x)}.$$

Michele Salvi (TU Berlin)

February 09, 2011

Large Deviation Theory deals with asymptotic computation of small probabilities on an exponential scale.

Theorem (Cramér)

Let $X_1, X_2, ...$ be i.i.d. \mathbb{R} -valued random variables such that

$$arphi(t) = \mathbb{E}\left[\mathrm{e}^{tX_1}
ight] < \infty \qquad orall t \in \mathbb{R}.$$

Theorem (Cramér)

Let $X_1, X_2, ...$ be i.i.d. \mathbb{R} -valued random variables such that

$$arphi(t) = \mathbb{E}\left[\mathrm{e}^{tX_1}
ight] < \infty \qquad orall t \in \mathbb{R}.$$

Then, for all $x > \mathbb{E}[X_1]$,

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbb{P}\Big(\frac{1}{n}\sum_{j=1}^nX_j\geq x\Big)=-\mathcal{I}(x),$$

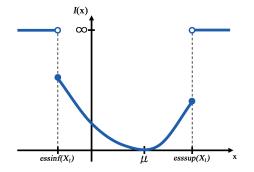
where

$$\mathcal{I}(x) := \sup_{t \in \mathbb{R}} [tx - \log \varphi(t)].$$

Michele Salvi (TU Berlin)

An LDP for a RWRC in a finite box

February 09, 2011 5 / 23



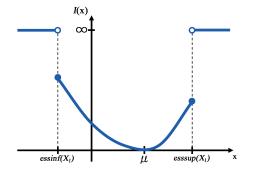
An LDP for a RWRC in a finite box

February 09, 2011

3

6 / 23

イロト イヨト イヨト イヨト



The function $\mathcal{I}(x)$

- is convex,
- has compact level sets (\implies is lower semi-continuous),
- $\mathcal{I}(x) \geq 0$ and equality holds iff $x = \mu = \mathbb{E}[X_1]$.

Definition

Let $\mathcal X$ be a Polish space. A function $\mathcal I:\mathcal X\to [0,\infty]$ is called rate function if

- $\mathcal{I} \not\equiv \infty$
- \mathcal{I} has compact level sets (\Longrightarrow lower semicontinuous)

Definition

Let $\mathcal X$ be a Polish space. A function $\mathcal I:\mathcal X\to [0,\infty]$ is called rate function if

- $\mathcal{I} \not\equiv \infty$
- \mathcal{I} has compact level sets (\Longrightarrow lower semicontinuous)

Definition

Let $\gamma_n \to \infty$ be a sequence in \mathbb{R}^+ . A sequence of probability measures $\{\mu_n\}$ on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$ satisfies a large deviation principle with rate function \mathcal{I} and speed γ_n if

Definition

Let $\mathcal X$ be a Polish space. A function $\mathcal I:\mathcal X\to [0,\infty]$ is called rate function if

- $\mathcal{I} \not\equiv \infty$
- \mathcal{I} has compact level sets (\Longrightarrow lower semicontinuous)

Definition

Let $\gamma_n \to \infty$ be a sequence in \mathbb{R}^+ . A sequence of probability measures $\{\mu_n\}$ on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$ satisfies a large deviation principle with rate function \mathcal{I} and speed γ_n if

Michele Salvi (TU Berlin)

1 Iower semi-continuous \implies attains a minimum on every compact set;

э

1 Iower semi-continuous \implies attains a minimum on every compact set;

If or a "nice" set A

$$\mu_n(A) \approx e^{-\gamma_n \inf_A \mathcal{I}};$$

э

1 Iower semi-continuous \implies attains a minimum on every compact set;

② for a "nice" set A $\mu_n(A) pprox \mathrm{e}^{-\gamma_n \inf_A \mathcal{I}};$

э

Q \mathcal{I} lower semi-continuous \implies attains a minimum on every compact set;

② for a "nice" set A $\mu_n(A) pprox \mathrm{e}^{-\gamma_n \inf_A \mathcal{I}};$

• if $\exists !x$ s.t. $\mathcal{I}(x) = 0$, the LDP implies SLLN ;

Q \mathcal{I} lower semi-continuous \implies attains a minimum on every compact set;

② for a "nice" set A $\mu_n(A) pprox \mathrm{e}^{-\gamma_n \inf_A \mathcal{I}};$

• if $\exists !x \text{ s.t. } \mathcal{I}(x) = 0$, the LDP implies SLLN ;

in general no relation between LDP and CLT.

Recall "Laplace method":

 $orall f: [0,1]
ightarrow \mathbb{R}$ continuous,

$$\lim_{n\to\infty}\frac{1}{n}\log\int_0^1\mathrm{e}^{nf(x)}\mathrm{d}x=\max_{x\in[0,1]}f(x).$$

Michele Salvi (TU Berlin)

An LDP for a RWRC in a finite box

February 09, 2011

э

Recall "Laplace method":

$$orall f: [0,1] o \mathbb{R}$$
 continuous, $\lim_{n \to \infty} \frac{1}{n} \log \int_0^1 \mathrm{e}^{nf(x)} \mathrm{d}x = \max_{x \in [0,1]} f(x).$

Theorem (Varadhan's Lemma)

Let (μ_n) satisfy an LDP on the Polish space \mathcal{X} with speed γ_n and rate function \mathcal{I} . Let $F : \mathcal{X} \to \mathbb{R}$ be a continuous function bounded from above. Then

$$\lim_{n\to\infty}\frac{1}{\gamma_n}\log\int_{\mathcal{X}}\mathrm{e}^{\gamma_nF(x)}\mu_n(\mathrm{d} x)=\sup_{x\in\mathcal{X}}\big[F(x)-\mathcal{I}(x)\big].$$

Let $(X_t)_{t \in [0,\infty)}$ be the simple random walk on \mathbb{Z}^d in continuous time. Its generator is the Laplace operator:

$$\Delta f(x) = \sum_{y \in \mathbb{Z}^d: y \sim x} [f(y) - f(x)], \quad x \in \mathbb{Z}^d, \ f: \mathbb{Z}^d \to \mathbb{R}$$

Call empirical measure

$$\ell_t(z) := \int_0^t \mathbb{1}_{\{X_s=z\}} \,\mathrm{d}s.$$

Let $(X_t)_{t \in [0,\infty)}$ be the simple random walk on \mathbb{Z}^d in continuous time. Its generator is the Laplace operator:

$$\Delta f(x) = \sum_{y \in \mathbb{Z}^d: y \sim x} [f(y) - f(x)], \quad x \in \mathbb{Z}^d, \ f: \mathbb{Z}^d \to \mathbb{R}$$

Call empirical measure

$$\ell_t(z) := \int_0^t \mathbb{1}_{\{X_s=z\}} \,\mathrm{d}s.$$

Theorem (Donsker, Varadhan)

The process of empirical measures $(\frac{1}{t}\ell_t)_{t\in\mathbb{R}^+}$ of the simple random walk under $\mathbb{P}_0(\cdot \cap \{\operatorname{supp}(\ell_t) \subseteq B\})$ satisfies a large deviation principle on $\mathcal{M}_1(B)$ with speed $\gamma_t = t$ and rate function

$$I(\mu) = \langle -\Delta_B \sqrt{\mu}, \sqrt{\mu} \rangle = \frac{1}{2} \sum_{x \sim y: x \in B} \left(\sqrt{\mu(x)} - \sqrt{\mu(y)} \right)^2.$$

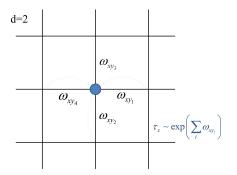
Michele Salvi (TU Berlin)

Image: A math black

æ

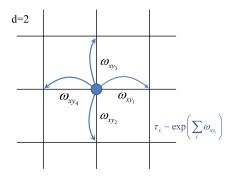
Consider the lattice \mathbb{Z}^d and assign to any bond (x, x + e) a random weight $\omega_{x,e}$ such that

- $\omega_{x,e} = \omega_{x+e,-e}$ (symmetry),
- $\{\omega_{x,e}\}_{x\in\mathbb{Z}^d,e\in\mathcal{E}}$ are i.i.d.,
- $\omega_{x,e} \geq 0$ (positivity).



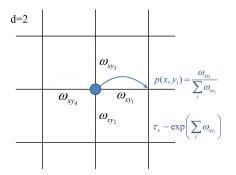
Consider the lattice \mathbb{Z}^d and assign to any bond (x, x + e) a random weight $\omega_{x,e}$ such that

- $\omega_{x,e} = \omega_{x+e,-e}$ (symmetry),
- $\{\omega_{x,e}\}_{x\in\mathbb{Z}^d,e\in\mathcal{E}}$ are i.i.d.,
- $\omega_{x,e} \geq 0$ (positivity).



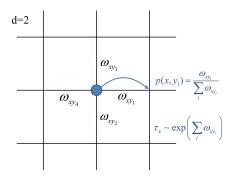
Consider the lattice \mathbb{Z}^d and assign to any bond (x, x + e) a random weight $\omega_{x,e}$ such that

- $\omega_{x,e} = \omega_{x+e,-e}$ (symmetry),
- $\{\omega_{x,e}\}_{x\in\mathbb{Z}^d,e\in\mathcal{E}}$ are i.i.d.,
- $\omega_{x,e} \geq 0$ (positivity).



Consider the lattice \mathbb{Z}^d and assign to any bond (x, x + e) a random weight $\omega_{x,e}$ such that

- $\omega_{x,e} = \omega_{x+e,-e}$ (symmetry),
- $\{\omega_{x,e}\}_{x\in\mathbb{Z}^d,e\in\mathcal{E}}$ are i.i.d.,
- $\omega_{x,e} \geq 0$ (positivity).



Definition

The Random Walk among Random Conductances (RWRC) is the continuous-time process generated by

$$\Delta^{\omega}f(x) := \sum_{x \in \mathbb{Z}^d, e \in \mathcal{E}} \omega_{x,e} \big(f(x+e) - f(x) \big).$$

	RWRE	RWRC
Time	Mostly discrete	Mostly continuous
Reversibility	No	Yes
Problems	CLT, SLLN, criteria for tran- sience/recurrence, ballisticity	CLT, SLLN

イロト イヨト イヨト イヨト

₹.

Michele Salvi (TU Berlin)

ω_{x,e} ∈ [0, 1] with Prob(ω_{x,e} > 0) > p_c(d), discrete time: quenched functional CLT, via homogenization [BISKUP, PRESCOTT (2007)]

- ω_{x,e} ∈ [0,1] with Prob(ω_{x,e} > 0) > p_c(d), discrete time: quenched functional CLT, via homogenization [BISKUP, PRESCOTT (2007)]
- ω 's with polynomial tails near 0, continuous time: probability of return to 0 in the quenched [BERGER, BISKUP, HOFFMAN, KOZMA (2008)] and the annealed case [FONTES, MATHIEU (2008)]

- ω_{x,e} ∈ [0,1] with Prob(ω_{x,e} > 0) > p_c(d), discrete time: quenched functional CLT, via homogenization [BISKUP, PRESCOTT (2007)]
- ω 's with polynomial tails near 0, continuous time: probability of return to 0 in the quenched [BERGER, BISKUP, HOFFMAN, KOZMA (2008)] and the annealed case [FONTES, MATHIEU (2008)]
- ω_{x,e} ∈ [0,1] with Prob(ω_{x,e} > 0) > p_c(d), continuous time: almost sure invariance principle [MATHIEU (2008)]

- ω_{x,e} ∈ [0,1] with Prob(ω_{x,e} > 0) > p_c(d), discrete time: quenched functional CLT, via homogenization [BISKUP, PRESCOTT (2007)]
- ω 's with polynomial tails near 0, continuous time: probability of return to 0 in the quenched [BERGER, BISKUP, HOFFMAN, KOZMA (2008)] and the annealed case [FONTES, MATHIEU (2008)]
- ω_{x,e} ∈ [0, 1] with Prob(ω_{x,e} > 0) > p_c(d), continuous time: almost sure invariance principle [MATHIEU (2008)]
- ω_{x,e} ∈ [1,∞), continuous time: annealed and quenched CLT [BARLOW, DEUSCHEL (2009)]

- ω_{x,e} ∈ [0,1] with Prob(ω_{x,e} > 0) > p_c(d), discrete time: quenched functional CLT, via homogenization [BISKUP, PRESCOTT (2007)]
- ω 's with polynomial tails near 0, continuous time: probability of return to 0 in the quenched [BERGER, BISKUP, HOFFMAN, KOZMA (2008)] and the annealed case [FONTES, MATHIEU (2008)]
- ω_{x,e} ∈ [0, 1] with Prob(ω_{x,e} > 0) > p_c(d), continuous time: almost sure invariance principle [MATHIEU (2008)]
- ω_{x,e} ∈ [1,∞), continuous time: annealed and quenched CLT [BARLOW, DEUSCHEL (2009)]
- $\omega_{x,e} \in [1,\infty)$, discrete time: convergence to some Lévy process [BARLOW, ČERNÝ (2010)]

- ω_{x,e} ∈ [0, 1] with Prob(ω_{x,e} > 0) > p_c(d), discrete time: quenched functional CLT, via homogenization [BISKUP, PRESCOTT (2007)]
- ω's with polynomial tails near 0, continuous time: probability of return to 0 in the quenched [BERGER, BISKUP, HOFFMAN, KOZMA (2008)] and the annealed case [FONTES, MATHIEU (2008)]
- ω_{x,e} ∈ [0,1] with Prob(ω_{x,e} > 0) > p_c(d), continuous time: almost sure invariance principle [MATHIEU (2008)]
- ω_{x,e} ∈ [1,∞), continuous time: annealed and quenched CLT [BARLOW, DEUSCHEL (2009)]
- $\omega_{x,e} \in [1,\infty)$, discrete time: convergence to some Lévy process [BARLOW, ČERNÝ (2010)]

Our case: restrict to a finite connected set and assume $\operatorname{essinf}\{\omega_{x,e}\}=0$ (more specifically $\log \operatorname{Prob}(\omega_{x,e} < \varepsilon) \simeq -\varepsilon^{-\eta}$, for $\varepsilon \downarrow 0, \eta > 1$.)

- ω_{x,e} ∈ [0, 1] with Prob(ω_{x,e} > 0) > p_c(d), discrete time: quenched functional CLT, via homogenization [BISKUP, PRESCOTT (2007)]
- ω 's with polynomial tails near 0, continuous time: probability of return to 0 in the quenched [BERGER, BISKUP, HOFFMAN, KOZMA (2008)] and the annealed case [FONTES, MATHIEU (2008)]
- $\omega_{x,e} \in [0,1]$ with $\operatorname{Prob}(\omega_{x,e} > 0) > p_c(d)$, continuous time: almost sure invariance principle [MATHIEU (2008)]
- $\omega_{x,e} \in [1,\infty)$, continuous time: annealed and quenched CLT [BARLOW, DEUSCHEL (2009)]
- $\omega_{x,e} \in [1,\infty)$, discrete time: convergence to some Lévy process [BARLOW, ČERNÝ (2010)]

Our case: restrict to a finite connected set and assume $\operatorname{essinf} \{\omega_{x,e}\} = 0$ (more specifically $\log \operatorname{Prob}(\omega_{x,e} < \varepsilon) \simeq -\varepsilon^{-\eta}$, for $\varepsilon \downarrow 0, \eta > 1$.)

• Aim: large deviation principle for local times!

$$\ell_t(x) := \int_0^t \mathbb{1}_{\{X_s = x\}} \mathrm{d}s$$

Michele Salvi (TU Berlin)

February 09, 2011

Let $(X_t)_{t \in [0,\infty)}$ be the RWRC. For $x \in B \subseteq \mathbb{Z}^d$, B finite and connected set, define the local time

$$\ell_t(x) := \int_0^t \mathbb{1}_{\{X_s = x\}} \mathrm{d}s.$$

We want to study the annealed behaviour of ℓ_t :

$$\left\langle \mathbb{P}_{0}^{\omega}\left(\frac{1}{t}\ell_{t}\sim g^{2}\right)
ight
angle$$

where $g : B \to \mathbb{R}^+$, with $\operatorname{supp}(g) \subseteq B$, $\sum_{x \in B} g^2(x) = 1$ and $\langle \cdot \rangle$ is the expectation w.r.t. the conductances.

Let $(X_t)_{t \in [0,\infty)}$ be the RWRC. For $x \in B \subseteq \mathbb{Z}^d$, B finite and connected set, define the local time

$$\ell_t(x) := \int_0^t \mathbb{1}_{\{X_s = x\}} \mathrm{d}s.$$

We want to study the annealed behaviour of ℓ_t :

$$\left\langle \mathbb{P}_{0}^{\omega}\left(\frac{1}{t}\ell_{t}\sim g^{2}\right)
ight
angle$$

where $g : B \to \mathbb{R}^+$, with $\operatorname{supp}(g) \subseteq B$, $\sum_{x \in B} g^2(x) = 1$ and $\langle \cdot \rangle$ is the expectation w.r.t. the conductances.

Three noises: \star the conductances;

★ the waiting times;

★ the embedded discrete-time RW.

Related fields:

Michele Salvi (TU Berlin)

An LDP for a RWRC in a finite box

February 09, 2011

15 / 23

æ

Related fields:

• Note that, by a Fourier expansion:

$$\mathbb{P}_0^{\omega}\Big(\frac{1}{t}\ell_t \sim g^2 \,\big| \, \mathrm{supp}(\ell_t) \in B \Big) = \sum_{k=1}^{d \cdot \#B} \mathrm{e}^{t\lambda_k^{\omega}(B)} f_k(\mathbf{0}) \langle f_k, \mathbb{1} \rangle \approx \mathrm{e}^{t\lambda_1^{\omega}(B)},$$

where $\lambda_1^{\omega}(B)$ is the bottom of the spectrum of $-\Delta^{\omega}$ restricted to the box *B*. Relation with Random Schrödinger operators!

Related fields:

• Note that, by a Fourier expansion:

$$\mathbb{P}_0^{\omega}\Big(\frac{1}{t}\ell_t \sim g^2 \,\big| \, \mathrm{supp}(\ell_t) \in B \Big) = \sum_{k=1}^{d \cdot \#B} \mathrm{e}^{t\lambda_k^{\omega}(B)} f_k(\mathbf{0}) \langle f_k, \mathbb{1} \rangle \approx \mathrm{e}^{t\lambda_1^{\omega}(B)},$$

where $\lambda_1^{\omega}(B)$ is the bottom of the spectrum of $-\Delta^{\omega}$ restricted to the box *B*. Relation with Random Schrödinger operators!

• Parabolic Anderson model with random Laplace operator:

$$\begin{cases} \partial_t u(x,t) &= \Delta^{\omega} u(x,t) + \xi(x) u(x,t), \quad t \in (0,\infty), \, x \in \mathbb{Z}^d \\ u(x,0) &= \delta_0(x) \qquad \qquad x \in \mathbb{Z}^d. \end{cases}$$

Feynman-Kac formula gives $u(x,t) = \mathbb{E}_x^{\omega} \left[e^{\int_0^t \xi(X_s) ds} \delta_0(X_t) \right]$, where X_t is a RWRC.

Recall:

- $B \subseteq \mathbb{Z}^d$ finite and connected;
- $\log \Pr(\omega_{x,e} < \varepsilon) \approx -\varepsilon^{-\eta}$, for $\varepsilon \downarrow 0, \eta > 1$;
- $\ell_t(x) := \int_0^t \mathbbm{1}_{\{X_s = x\}} \mathrm{d}s.$

э

Recall:

• $B \subseteq \mathbb{Z}^d$ finite and connected;

•
$$\log \Pr(\omega_{x,e} < \varepsilon) \approx -\varepsilon^{-\eta}$$
, for $\varepsilon \downarrow 0, \eta > 1$;

•
$$\ell_t(x) := \int_0^t \mathbbm{1}_{\{X_s=x\}} \mathrm{d}s.$$

Theorem (joint work with Wolfgang König and Tilman Wolff)

The process of empirical measures $(\frac{1}{t}\ell_t)_{t\in\mathbb{R}^+}$ of the Random Walk among Random Conductances under the annealed law $\langle \mathbb{P}_0^{\omega}(\cdot \cap \{\operatorname{supp}(\ell_t) \subseteq B\}) \rangle$ satisfies a large deviation principle on $\mathcal{M}_1(B)$ with speed $\gamma_t = t^{\frac{\eta}{\eta+1}}$ and rate function J given by

$$J(g^2) := C_\eta \sum_{z,e} |g(z+e) - g(z)|^{rac{2\eta}{\eta+1}} = C_\eta \|
abla g\|^{rac{2\eta}{1+\eta}}_{rac{2\eta}{1+\eta}}$$

for all $g^2 \in \mathcal{M}_1(B)$, where $\mathcal{C}_\eta := ig(1+rac{1}{\eta}ig)\eta^{rac{1}{1+\eta}}.$

This means

Michele Salvi (TU Berlin)

$$\left\langle \mathbb{P}_{0}^{\omega}\left(\left\{\frac{1}{t}\ell_{t}\sim g^{2}\right\}\cap\left\{\operatorname{supp}(\ell_{t})\subseteq B\right\}\right)\right\rangle \approx \mathrm{e}^{-\gamma_{t}C_{\eta}\sum_{z,e}|g(z+e)-g(z)|^{\frac{2\eta}{\eta+1}}}$$

An LDP for a RWRC in a finite box

3

-≣->

٠

This means

$$\left\langle \mathbb{P}_{0}^{\omega}\left(\left\{\frac{1}{t}\ell_{t}\sim g^{2}\right\}\cap\left\{\operatorname{supp}(\ell_{t})\subseteq B\right\}\right)\right\rangle \approx e^{-\gamma_{t}C_{\eta}\sum_{z,e}|g(z+e)-g(z)|^{\frac{2\eta}{\eta+1}}}$$

In particular:

Corollary

The annealed probability of non-exit from the box B for the Random Walk among Random Conductances for $t \gg 0$ is

$$\log \left\langle \mathbb{P}_0^{\omega} \Big(\operatorname{supp}(\ell_t) \subseteq B \Big) \right\rangle \simeq \sup_{g^2 \in \mathcal{M}_1(B)} -t^{\frac{\eta}{1+\eta}} C_\eta \sum_{z,e} |g(z+e) - g(z)|^{\frac{2\eta}{\eta+1}}.$$

Project:

• rescale the conductances;

Project:

- rescale the conductances;
- combine "classical" LDP's for weighted random walk and for the conductances;

Project:

- rescale the conductances;
- combine "classical" LDP's for weighted random walk and for the conductances;
- "physicists' trick";

Project:

- rescale the conductances;
- combine "classical" LDP's for weighted random walk and for the conductances;
- "physicists' trick";
- optimization over the rescaled shape of the conductances.

$$\left\langle \mathbb{P}_{0}^{\omega} \left(\frac{1}{t} \ell_{t} \sim g^{2} \right) \mathbb{1}_{\{t' \omega \sim \varphi\}} \right\rangle \approx \mathbb{P}_{0}^{t^{-r}\varphi} \left(\frac{1}{t} \ell_{t} \sim g^{2} \right) \operatorname{Prob}(t' \omega \sim \varphi)$$

Michele Salvi (TU Berlin)

An LDP for a RWRC in a finite box

February 09, 2011

æ

19 / 23

イロト イヨト イヨト イヨト

$$\left\langle \mathbb{P}_{0}^{\omega}\left(\frac{1}{t}\ell_{t}\sim g^{2}\right)\mathbb{1}_{\left\{t^{r}\omega\sim\varphi\right\}}\right\rangle \approx \mathbb{P}_{0}^{t^{-r}\varphi}\left(\frac{1}{t}\ell_{t}\sim g^{2}\right)\operatorname{Prob}\left(t^{r}\omega\sim\varphi\right)$$

LDP for the conductances:

$$\begin{aligned} \operatorname{Prob}(\forall z, e : t^{r} \omega_{z, e} \sim \varphi(z, e)) &= \prod_{z, e} \operatorname{Prob}(\omega_{z, e} \sim t^{-r} \varphi(z, e)) \\ &\approx \exp\left\{-t^{r\eta} \sum_{z, e} \varphi(z, e)^{-\eta}\right\}. \end{aligned}$$

< A

3

$$\left\langle \mathbb{P}_{0}^{\omega}\left(\frac{1}{t}\ell_{t} \sim g^{2}\right)\mathbb{1}_{\left\{t^{r}\omega\sim\varphi\right\}}\right\rangle \approx \mathbb{P}_{0}^{t^{-r}\varphi}\left(\frac{1}{t}\ell_{t} \sim g^{2}\right)\operatorname{Prob}\left(t^{r}\omega\sim\varphi\right)$$

LDP for the conductances:

$$\begin{aligned} \operatorname{Prob}(\forall z, e : t^{r} \omega_{z, e} \sim \varphi(z, e)) &= \prod_{z, e} \operatorname{Prob}(\omega_{z, e} \sim t^{-r} \varphi(z, e)) \\ &\approx \exp\left\{-t^{r\eta} \sum_{z, e} \varphi(z, e)^{-\eta}\right\}. \end{aligned}$$

LDP for weighted random walk:

$$\mathbb{P}_0^{\psi}\Big(rac{1}{t}\ell_t\sim g^2\Big)pprox \expig\{-t\sum_{z,e}\psi(z,e)\big(g(z+e)-g(z)\big)^2ig\}$$

Michele Salvi (TU Berlin)

February 09, 2011

$$\left\langle \mathbb{P}_{0}^{\omega}\left(\frac{1}{t}\ell_{t}\sim g^{2}\right)\mathbb{1}_{\left\{t'\omega\sim\varphi\right\}}\right\rangle \approx \mathbb{P}_{0}^{t''\varphi}\left(\frac{1}{t}\ell_{t}\sim g^{2}\right)\operatorname{Prob}\left(t'\omega\sim\varphi\right)$$

LDP for the conductances:

$$\begin{aligned} \operatorname{Prob}(\forall z, e : t^r \omega_{z, e} \sim \varphi(z, e)) &= \prod_{z, e} \operatorname{Prob}(\omega_{z, e} \sim t^{-r} \varphi(z, e)) \\ &\approx \exp\left\{-t^{r\eta} \sum_{z, e} \varphi(z, e)^{-\eta}\right\}. \end{aligned}$$

LDP for weighted random walk:

$$\mathbb{P}_0^{\psi}\Big(rac{1}{t}\ell_t\sim g^2\Big)pprox \expig\{-t\sum_{z,e}\psi(z,e)ig(g(z+e)-g(z)ig)^2ig\}$$

therefore

$$\mathbb{P}_0^{t^{-r}\varphi}\Big(\frac{1}{t}\ell_t \sim g^2\Big) = \mathbb{P}_0^{\varphi}\Big(\frac{1}{t^{1-r}}\ell_{t^{1-r}} \sim g^2\Big)$$
$$\approx \exp\Big\{-t^{1-r}\sum_{z,e}\varphi(z,e)\big(g(z+e)-g(z)\big)^2\Big\}$$

Physicists' trick: Best rate of convergence for

$$t^{r\eta} symp t^{1-r}$$
, i.e. $r=rac{1}{1+\eta}.$

Then correct speed for the LDP: $\gamma_t = t^{rac{\eta}{1+\eta}}.$

Physicists' trick: Best rate of convergence for

$$t^{r\eta} symp t^{1-r}$$
, i.e. $r=rac{1}{1+\eta}.$

Then correct speed for the LDP: $\gamma_t = t^{rac{\eta}{1+\eta}}.$

Optimization over φ for fixed g:

$$\sum_{z,e} \left[\varphi(z,e)^{-\eta} - \varphi(z,e)(g(z+e) - g(z))^2 \right]$$

is optimal if

$$\varphi(z,e) = \eta^{rac{1}{1+\eta}} |g(z+e) - g(e)|^{-rac{2}{1+\eta}}.$$

Technical obstacles:

Michele Salvi (TU Berlin)

< A

æ

Technical obstacles:

Lower bound for open sets.
 Problem: need to understand the asymptotics of

$$\inf_{\varphi \in A} \mathbb{P}^{\varphi} \Big(\frac{1}{t} \ell_t \in \cdot \Big).$$

There seems to be no monotonicity, but there is some kind of continuity of the map $\varphi \longrightarrow \mathbb{P}_0^{\varphi}(\cdot)$.

Technical obstacles:

• Lower bound for open sets.

Problem: need to understand the asymptotics of

$$\inf_{\varphi\in A}\mathbb{P}^{\varphi}\Big(\frac{1}{t}\ell_t\in\cdot\Big).$$

There seems to be no monotonicity, but there is some kind of continuity of the map $\varphi \longrightarrow \mathbb{P}_0^{\varphi}(\cdot)$.

• Upper bound for closed sets.

Problem: $t^r \omega$ is not bounded. We need a compactification argument for the space of rescaled conductances.

Future work

Future work:



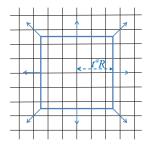
Consider growing box

$$B_t = \alpha_t B \cap \mathbb{Z}^d,$$

say $\alpha_t = t^a$.

Future work

Future work:



Consider growing box

$$B_t = \alpha_t B \cap \mathbb{Z}^d,$$

say $\alpha_t = t^a$. The rescaled local times is

$$L_t(x) = \frac{\alpha_t^d}{t} \ell_t(\lfloor \alpha_t x \rfloor), \qquad x \in B.$$

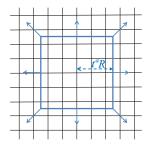
Michele Salvi (TU Berlin)

February 09, 2011

э

Future work

Future work:



Consider growing box

$$B_t = \alpha_t B \cap \mathbb{Z}^d,$$

say $\alpha_t = t^a$. The rescaled local times is

$$L_t(x) = \frac{\alpha_t^d}{t} \ell_t(\lfloor \alpha_t x \rfloor), \qquad x \in B.$$

 L_t should satisfy an LDP with speed

$$\gamma_t = t^{rac{1-a(d\eta-2)}{1+\eta}}$$

and rate function

$$J(f^2) = C_{\eta} \sum_{e \in \mathcal{N}_+} \int_B \left((e \cdot \nabla f)^2 \right)^{\frac{\eta}{1+\eta}} = C_{\eta} \|\nabla f\|_{\frac{2\eta}{1+\eta}}^{\frac{2\eta}{1+\eta}}$$

Dankeschön!

æ