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Large Deviations for dummies Cramér's Theorem

X1,X2, ... i.i.d. R-valued random variables with E [X1] = 0 and
Var(X1) = σ2 ∈ R .

Strong law of large numbers (SLLN):

P
(1
n

n∑
j=1

Xj
n→∞−−−→ 0

)
= 1;

Central limit theorem (CLT):

P
( 1

σ
√
n

n∑
j=1

Xj ∈ A
)

n→∞−−−→ 1√
2π

∫
A

e−
y2

2 dy ;

Large Deviation Principle (LDP) (+ other conditions):

P
(1
n

n∑
j=1

Xj ≥ x
)
≈ e−nI(x).
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Large Deviations for dummies Cramér's Theorem

Large Deviation Theory deals with asymptotic computation
of small probabilities on an exponential scale.
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Large Deviations for dummies Cramér's Theorem

Theorem (Cramér)

Let X1,X2, ... be i.i.d. R-valued random variables such that

ϕ(t) = E
[
etX1

]
<∞ ∀t ∈ R.

Then, for all x > E [X1],

lim
n→∞

1

n
logP

(1
n

n∑
j=1

Xj ≥ x
)

= −I(x),

where

I(x) := sup
t∈R

[
tx − logϕ(t)

]
.
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Large Deviations for dummies Cramér's Theorem

The function I(x)

is convex,

has compact level sets (=⇒ is lower semi-continuous),

I(x) ≥ 0 and equality holds i� x = µ = E [X1].
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Large Deviations for dummies Main de�nition

De�nition

Let X be a Polish space. A function I : X → [0,∞] is called rate function

if

I 6≡ ∞
I has compact level sets (=⇒ lower semicontinuous)

De�nition

Let γn →∞ be a sequence in R+. A sequence of probability measures

{µn} on (X ,B(X )) satis�es a large deviation principle with rate function I
and speed γn if

1 For every open set O, lim inf
n→∞

1

γn
logµn(O) ≥ − inf

x∈O
I(x);

2 For every closed set C , lim sup
n→∞

1

γn
logµn(C ) ≤ − inf

x∈C
I(x).
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Large Deviations for dummies Main de�nition

Remarks

1 I lower semi-continuous =⇒ attains a minimum on every compact set;

2 for a "nice" set A
µn(A) ≈ e−γn infA I ;

3 µn(X ) = 1 =⇒ inf
x∈X
I(x) = min

x∈X
I(x) = 0;

4 if ∃!x s.t. I(x) = 0, the LDP implies SLLN ;

5 in general no relation between LDP and CLT.
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Large Deviations for dummies Applications

Recall "Laplace method":

∀f : [0, 1]→ R continuous, lim
n→∞

1

n
log

∫
1

0

enf (x)dx = max
x∈[0,1]

f (x).

Theorem (Varadhan's Lemma)

Let (µn) satisfy an LDP on the Polish space X with speed γn and rate

function I. Let F : X → R be a continuous function bounded from above.

Then

lim
n→∞

1

γn
log

∫
X
eγnF (x)µn(dx) = sup

x∈X

[
F (x)− I(x)

]
.
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Large Deviations for dummies Applications

Let (Xt)t∈[0,∞) be the simple random walk on Zd in continuous time. Its
generator is the Laplace operator:

∆f (x) =
∑

y∈Zd : y∼x

[f (y)− f (x)], x ∈ Zd , f : Zd → R

Call empirical measure

`t(z) :=

∫ t

0

1l{Xs=z} ds.

Theorem (Donsker, Varadhan)

The process of empirical measures (1t `t)t∈R+ of the simple random walk

under P0( · ∩ {supp(`t) ⊆ B}) satis�es a large deviation principle on

M1(B) with speed γt = t and rate function

I (µ) =
〈
−∆B

√
µ,
√
µ
〉

=
1

2

∑
x∼y : x∈B

(√
µ(x)−

√
µ(y)

)2
.
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Random Walk among Random Conductances The model

The model

Consider the lattice Zd and assign to
any bond (x , x + e) a random weight
ωx ,e such that

ωx ,e = ωx+e,−e (symmetry),

{ωx ,e}x∈Zd ,e∈E are i.i.d.,

ωx ,e ≥ 0 (positivity).

De�nition

The Random Walk among Random Conductances (RWRC) is the

continuous-time process generated by

∆ωf (x) :=
∑

x∈Zd ,e∈E

ωx ,e
(
f (x + e)− f (x)

)
.
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Random Walk among Random Conductances The model

RWRE RWRC

Time Mostly discrete Mostly continuous

Reversibility No Yes

CLT, SLLN,
Problems criteria for tran-

sience/recurrence,
ballisticity

CLT, SLLN
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Random Walk among Random Conductances The model

What has been done so far?

ωx ,e ∈ [0, 1] with Prob(ωx ,e > 0) > pc(d), discrete time: quenched
functional CLT, via homogenization [BISKUP, PRESCOTT (2007)]

ω's with polynomial tails near 0, continuous time: probability of return
to 0 in the quenched [BERGER, BISKUP, HOFFMAN, KOZMA
(2008)] and the annealed case [FONTES, MATHIEU (2008)]

ωx ,e ∈ [0, 1] with Prob(ωx ,e > 0) > pc(d), continuous time: almost
sure invariance principle [MATHIEU (2008)]

ωx ,e ∈ [1,∞), continuous time: annealed and quenched CLT
[BARLOW, DEUSCHEL (2009)]

ωx ,e ∈ [1,∞), discrete time: convergence to some Lévy process
[BARLOW, ČERNÝ (2010)]

Our case: restrict to a �nite connected set and assume essinf{ωx ,e} = 0
(more speci�cally logProb

(
ωx ,e < ε

)
w −ε−η, for ε ↓ 0, η > 1.)

Aim: large deviation principle for local times!
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ωx ,e ∈ [0, 1] with Prob(ωx ,e > 0) > pc(d), continuous time: almost
sure invariance principle [MATHIEU (2008)]

ωx ,e ∈ [1,∞), continuous time: annealed and quenched CLT
[BARLOW, DEUSCHEL (2009)]

ωx ,e ∈ [1,∞), discrete time: convergence to some Lévy process
[BARLOW, ČERNÝ (2010)]

Our case: restrict to a �nite connected set and assume essinf{ωx ,e} = 0
(more speci�cally logProb

(
ωx ,e < ε

)
w −ε−η, for ε ↓ 0, η > 1.)

Aim: large deviation principle for local times!
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Random Walk among Random Conductances The model

Let (Xt)t∈[0,∞) be the RWRC. For x ∈ B ⊆ Zd , B �nite and connected
set, de�ne the local time

`t(x) :=

∫ t

0

1l{Xs=x}ds.

We want to study the annealed behaviour of `t :〈
Pω0
(1
t
`t ∼ g2

)〉
where g : B → R+, with supp(g) ⊆ B,

∑
x∈B g2(x) = 1 and 〈 · 〉 is the

expectation w.r.t. the conductances.

Three noises: F the conductances;

F the waiting times;

F the embedded discrete-time RW.
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Random Walk among Random Conductances Related �elds

Related �elds:

Note that, by a Fourier expansion:

Pω0
( 1

t
`t ∼ g2

∣∣ supp(`t) ∈ B
)

=

d ·#B∑
k=1

etλ
ω
k
(B)fk(0)〈fk , 1l〉 ≈ etλ

ω
1 (B),

where λω
1

(B) is the bottom of the spectrum of −∆ω restricted to the
box B . Relation with Random Schrödinger operators!

Parabolic Anderson model with random Laplace operator:{
∂tu(x , t) = ∆ωu(x , t) + ξ(x)u(x , t), t ∈ (0,∞), x ∈ Zd

u(x , 0) = δ0(x) x ∈ Zd .

Feynman-Kac formula gives u(x , t) = Eωx
[
e
∫ t
0 ξ(Xs)dsδ0(Xt)

]
, where Xt

is a RWRC.
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Random Walk among Random Conductances The main theorem

Recall:

B ⊆ Zd �nite and connected;

logPr
(
ωx ,e < ε

)
≈ −ε−η, for ε ↓ 0, η > 1;

`t(x) :=
∫ t
0
1l{Xs=x}ds.

Theorem (joint work with Wolfgang König and Tilman Wol�)

The process of empirical measures (1t `t)t∈R+ of the Random Walk among

Random Conductances under the annealed law
〈
Pω
0

( · ∩ {supp(`t) ⊆ B})
〉

satis�es a large deviation principle onM1(B) with speed γt = t
η
η+1 and

rate function J given by

J(g2) := Cη
∑
z,e

|g(z + e)− g(z)|
2η
η+1 = Cη‖∇g‖

2η
1+η
2η
1+η

for all g2 ∈M1(B), where Cη :=
(
1 + 1

η

)
η

1
1+η .
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Random Walk among Random Conductances The main theorem

This means〈
Pω0
( {1

t
`t ∼ g2

}
∩
{
supp(`t) ⊆ B

})〉
≈ e−γtCη

∑
z,e |g(z+e)−g(z)|

2η
η+1

.

In particular:

Corollary

The annealed probability of non-exit from the box B for the Random Walk

among Random Conductances for t � 0 is

log
〈

Pω0
(
supp(`t) ⊆ B

)〉
' sup

g2∈M1(B)

−t
η

1+ηCη
∑
z,e

|g(z + e)− g(z)|
2η
η+1 .
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Random Walk among Random Conductances Sketch of the proof

Sketch of the proof (heuristics):

Project:

rescale the conductances;

combine "classical" LDP's for weighted random walk and for the
conductances;

"physicists' trick";

optimization over the rescaled shape of the conductances.
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Random Walk among Random Conductances Sketch of the proof〈
Pω0
(1
t
`t ∼ g2

)
1l{trω∼ϕ}

〉
≈ Pt−rϕ

0

(1
t
`t ∼ g2

)
Prob

(
trω ∼ ϕ

)

LDP for the conductances:

Prob
(
∀z , e : trωz,e ∼ ϕ(z , e)

)
=
∏
z,e

Prob
(
ωz,e ∼ t−rϕ(z , e)

)
≈ exp

{
− trη

∑
z,e

ϕ(z , e)−η
}
.

LDP for weighted random walk:

Pψ
0

(1
t
`t ∼ g2

)
≈ exp

{
− t

∑
z,e

ψ(z , e)
(
g(z + e)− g(z)

)2}
therefore

Pt−rϕ
0

(1
t
`t ∼ g2

)
= Pϕ

0

( 1

t1−r
`t1−r ∼ g2

)
≈ exp

{
− t1−r

∑
z,e

ϕ(z , e)
(
g(z + e)− g(z)

)2}

Michele Salvi (TU Berlin) An LDP for a RWRC in a �nite box February 09, 2011 19 / 23



Random Walk among Random Conductances Sketch of the proof〈
Pω0
(1
t
`t ∼ g2

)
1l{trω∼ϕ}

〉
≈ Pt−rϕ

0

(1
t
`t ∼ g2

)
Prob

(
trω ∼ ϕ

)
LDP for the conductances:

Prob
(
∀z , e : trωz,e ∼ ϕ(z , e)

)
=
∏
z,e

Prob
(
ωz,e ∼ t−rϕ(z , e)

)
≈ exp

{
− trη

∑
z,e

ϕ(z , e)−η
}
.

LDP for weighted random walk:

Pψ
0

(1
t
`t ∼ g2

)
≈ exp

{
− t

∑
z,e

ψ(z , e)
(
g(z + e)− g(z)

)2}
therefore

Pt−rϕ
0

(1
t
`t ∼ g2

)
= Pϕ

0

( 1

t1−r
`t1−r ∼ g2

)
≈ exp

{
− t1−r

∑
z,e

ϕ(z , e)
(
g(z + e)− g(z)

)2}

Michele Salvi (TU Berlin) An LDP for a RWRC in a �nite box February 09, 2011 19 / 23



Random Walk among Random Conductances Sketch of the proof〈
Pω0
(1
t
`t ∼ g2

)
1l{trω∼ϕ}

〉
≈ Pt−rϕ

0

(1
t
`t ∼ g2

)
Prob

(
trω ∼ ϕ

)
LDP for the conductances:

Prob
(
∀z , e : trωz,e ∼ ϕ(z , e)

)
=
∏
z,e

Prob
(
ωz,e ∼ t−rϕ(z , e)

)
≈ exp

{
− trη

∑
z,e

ϕ(z , e)−η
}
.

LDP for weighted random walk:

Pψ
0

(1
t
`t ∼ g2

)
≈ exp

{
− t

∑
z,e

ψ(z , e)
(
g(z + e)− g(z)

)2}

therefore

Pt−rϕ
0

(1
t
`t ∼ g2

)
= Pϕ

0

( 1

t1−r
`t1−r ∼ g2

)
≈ exp

{
− t1−r

∑
z,e

ϕ(z , e)
(
g(z + e)− g(z)

)2}

Michele Salvi (TU Berlin) An LDP for a RWRC in a �nite box February 09, 2011 19 / 23



Random Walk among Random Conductances Sketch of the proof〈
Pω0
(1
t
`t ∼ g2

)
1l{trω∼ϕ}

〉
≈ Pt−rϕ

0

(1
t
`t ∼ g2

)
Prob

(
trω ∼ ϕ

)
LDP for the conductances:

Prob
(
∀z , e : trωz,e ∼ ϕ(z , e)

)
=
∏
z,e

Prob
(
ωz,e ∼ t−rϕ(z , e)

)
≈ exp

{
− trη

∑
z,e

ϕ(z , e)−η
}
.

LDP for weighted random walk:

Pψ
0

(1
t
`t ∼ g2

)
≈ exp

{
− t

∑
z,e

ψ(z , e)
(
g(z + e)− g(z)

)2}
therefore

Pt−rϕ
0

(1
t
`t ∼ g2

)
= Pϕ

0

( 1

t1−r
`t1−r ∼ g2

)
≈ exp

{
− t1−r

∑
z,e

ϕ(z , e)
(
g(z + e)− g(z)

)2}
Michele Salvi (TU Berlin) An LDP for a RWRC in a �nite box February 09, 2011 19 / 23



Random Walk among Random Conductances Sketch of the proof

Physicists' trick:
Best rate of convergence for

trη � t1−r , i.e. r =
1

1 + η
.

Then correct speed for the LDP: γt = t
η

1+η .

Optimization over ϕ for �xed g :∑
z,e

[
ϕ(z , e)−η − ϕ(z , e)(g(z + e)− g(z))2

]
is optimal if

ϕ(z , e) = η
1

1+η |g(z + e)− g(e)|−
2

1+η .
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Random Walk among Random Conductances Sketch of the proof

Technical obstacles:

Lower bound for open sets.
Problem: need to understand the asymptotics of

inf
ϕ∈A

Pϕ
(1
t
`t ∈ ·

)
.

There seems to be no monotonicity, but there is some kind of
continuity of the map ϕ −→ Pϕ

0
( · ).

Upper bound for closed sets.
Problem: trω is not bounded. We need a compacti�cation argument
for the space of rescaled conductances.
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Future work

Future work:

Consider growing box

Bt = αt B ∩ Zd ,

say αt = ta.

The rescaled local times is

Lt(x) =
αd
t

t
`t(bαtxc), x ∈ B.

Lt should satisfy an LDP with speed

γt = t
1−a(dη−2)

1+η

and rate function

J(f 2) = Cη
∑
e∈N+

∫
B

(
(e · ∇f )2

) η
1+η = Cη‖∇f ‖

2η
1+η
2η
1+η

.
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Future work

Dankeschön!
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